Abstract

Computed tomography (CT) scan provides first-hand knowledge to doctors to identify an ailment. Deep neural networks help enhance image understanding through segmentation and labeling. In this work, we implement two variants of Pix2Pix generative adversarial networks (GANs) with varying complexities of generator and discriminator networks for plane invariant segmentation of CT scan images and subsequently propose an effective generative adversarial network with a suitably weighted binary cross-entropy loss function followed by image processing layer necessary for getting high-quality output segmentation. Our conditional GAN is powered by a unique set of an encoder-decoder network that coupled with the image processing layer produces enhanced segmentation. The network can be extended to the complete set of Hounsfield units and can also be implemented on smartphones. Furthermore, we also demonstrate effects on accuracy, F-1 score, and Jaccard index by using the conditional GAN networks on the spine vertebrae dataset, thus achieving an average of 86.28 % accuracy, 90.5 % Jaccard index score, and 89.9 % F-1 score in predicting segmented maps for validation input images. In addition, an overall lifting of accuracy, F-1 score, and Jaccard index graph for validation images with better continuity has also been highlighted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.