Abstract

The plane elasticity theory of two-dimensional octagonal quasicrystals is developed in this paper. The plane elasticity problem of quasicrystals is reduced to a single higher-order partial differential equation by introducing a displacement function. As an example, the exact analytic solution of a Mode I Griffith crack in the material is obtained by using the Fourier transform and dual integral equations theory, then the displacement and stress fields, stress intensity factor and strain energy release rate can be calculated. The physical significance of the results relative to the phason and the difference between the mechanical behaviours of the crack problem in crystals and quasicrystals are figured out. These provide important information for studying the deformation and fracture of the new solid phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.