Abstract

The secondary cosmic microwave background (CMB) $B$-modes stem from the post-decoupling distortion of the polarization $E$-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced $B$-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB $B$-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization $E$-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced an all-sky template map of the lensing-induced $B$-modes using a real-space algorithm that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) $B$-mode map can be used to measure the lensing $B$-mode power spectrum at multipoles up to $2000$. In particular, when cross-correlating with the $B$-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced $B$-mode power spectrum measurement at a significance level of $12\,\sigma$, which agrees with the theoretical expectation derived from the Planck best-fit $\Lambda$CDM model. This unique nearly all-sky secondary $B$-mode template, which includes the lensing-induced information from intermediate to small ($10\lesssim \ell\lesssim 1000$) angular scales, is delivered as part of the Planck 2015 public data release. It will be particularly useful for experiments searching for primordial $B$-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB $B$-modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call