Abstract

We numerically study a model of interacting spin-$1/2$ electrons with random exchange coupling on a fully connected lattice. This model hosts a quantum critical point separating two distinct metallic phases as a function of doping: a Fermi liquid phase with a large Fermi surface volume and a low-doping phase with local moments ordering into a spin-glass. We show that this quantum critical point has non-Fermi liquid properties characterized by $T$-linear Planckian behavior, $\omega/T$ scaling and slow spin dynamics of the Sachdev-Ye-Kitaev (SYK) type. The $\omega/T$ scaling function associated with the electronic self-energy is found to have an intrinsic particle-hole asymmetry, a hallmark of a `skewed' non-Fermi liquid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.