Abstract
We examine the effects of photon-axion mixing on the CMB. We show that if there are very underdense regions between us and the last scattering surface which contain coherent magnetic fields (whose strength can be orders of magnitude weaker than the current bounds), then photon-axion mixing can induce observable deviations in the CMB spectrum. Specifically, we show that the mixing can give rise to non-thermal spots on the CMB sky. As an example we consider the well known CMB cold spot, which according to the Planck data has a weak distortion from a black body spectrum, that can be fit by our model. While this explanation of the non-thermality in the region of the cold spot is quite intriguing, photon-axion oscillations do not explain the temperature of the cold spot itself. Nevertheless we demonstrate the possible sensitivity of the CMB to ultralight axions which could be exploited by observers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.