Abstract
We investigate constraints on the abundance of primordial black holes (PBHs) in the mass range 10^{15}-10^{17} g using data from the Cosmic Microwave Background (CMB) and MeV extragalactic gamma-ray background (EGB). Hawking radiation from PBHs with lifetime greater than the age of the universe leaves an imprint on the CMB through modification of the ionization history and the damping of CMB anisotropies. Using a model for redshift dependent energy injection efficiencies, we show that a combination of temperature and polarization data from Planck provides the strongest constraint on the abundance of PBHs for masses \sim 10^{15}-10^{16} g, while the EGB dominates for masses \gtrsim 10^{16} g. Both the CMB and EGB now rule out PBHs as the dominant component of dark matter for masses \sim 10^{16}-10^{17} g. Planned MeV gamma-ray observatories are ideal for further improving constraints on PBHs in this mass range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.