Abstract

We study the Plancherel–Rotach asymptotics of four families of orthogonal polynomials: the Chen–Ismail polynomials, the Berg–Letessier–Valent polynomials, and the Conrad–Flajolet polynomials I and II. All these polynomials arise in indeterminate moment problems, and three of them are birth and death process polynomials with cubic or quartic rates. We employ a difference equation asymptotic technique due to Z. Wang and R. Wong. Our analysis leads to a conjecture about large degree behavior of polynomials orthogonal with respect to solutions of indeterminate moment problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.