Abstract

Discrete track recording (DTR) media which consist of discrete tracks are presently considered a new paradigm to achieve ultra-high areal density in hard disk drives (HDDs). However, due to the presence of the grooves, stable flying of magnetic recording sliders over DTR media is a question of great concern. In this study, planarization of DTR media with hydrogen silsesquioxane (HSQ), a nonmagnetic material, is investigated. Scanning electron microscopy (SEM) of planarized disks showed very good ldquogap fillingrdquo properties of HSQ in the groove area during the planarization process. Atomic force microscopy (AFM) measurements indicated that the residual groove depth of planarized DTR media decreases with decreasing rotating speed of the disk during spin-coating. Improved flyability of magnetic recording sliders over DTR media was observed after planarization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call