Abstract

We present a short proof of the following theorems simultaneously: Kuratowski's theorem, Fary's theorem, and the theorem of Tutte that every 3-connected planar graph has a convex representation. We stress the importance of Kuratowski's theorem by showing how it implies a result of Tutte on planar representations with prescribed vertices on the same facial cycle as well as the planarity criteria of Whitney, MacLane, Tutte, and Fournier (in the case of Whitney's theorem and MacLane's theorem this has already been done by Tutte). In connection with Tutte's planarity criterion in terms of non-separating cycles we give a short proof of the result of Tutte that the induced non-separating cycles in a 3-connected graph generate the cycle space. We consider each of the above-mentioned planarity criteria for infinite graphs. Specifically, we prove that Tutte's condition in terms of overlap graphs is equivalent to Kuratowski's condition, we characterize completely the infinite graphs satisfying MacLane's condition and we prove that the 3-connected locally finite ones have convex representations. We investigate when an infinite graph has a dual graph and we settle this problem completely in the locally finite case. We show by examples that Tutte's criterion involving non-separating cycles has no immediate extension to infinite graphs, but we present some analogues of that criterion for special classes of infinite graphs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call