Abstract

Recently, a conformal surface plasmon (CSP) structure has been successfully proposed, which is very promising for application of planar plasmonic devices in the frequency ranging from microwave to mid-infrared [Proc. Natl. Acad. Sci. U.S.A. 110, 40-45 (2013)]. Here we investigated the dispersions and electromagnetic (EM) field patterns of a symmetric CSP structure in which the two sides of the planar metal strip are symmetrically corrugated by groove arrays. The symmetric CSP structure can support both the symmetric mode (even mode) and the anti-symmetric mode (odd mode) of surface wave propagation. Based on the even mode, we analyzed the EM wave coupling between two adjacent symmetry CSP strips, and then designed and analyzed two planar CSP waveguide devices in the terahertz frequency: a frequency splitter and a 3 dB directional coupler. To verify the functionality and performance of these waveguide devices, we scaled down the working frequency to microwave and designed similar devices with scaled geometry. We implemented microwave experiments on the fabricated prototypes, and the tested device performances have clearly validated the functionality of our designs. The symmetric CSP structure is believed to be very applicable in future design of novel planar plasmonic device and circuitry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call