Abstract

The principles of attenuation of the light intensity due to multiple reflections are realised in a planar silicon oxide (SiO(2))silicon nitride (Si(3)N(4)) waveguiding structure for the purpose of developing optical biosensors with improved sensitivity. The analysis of the experimental data shows that the large difference in refractive indices of core and cladding layers gives rise to an increase in sensitivity by a factor of 3 over previously reported structures. Composite polyelectrolyte self-assembled thin films containing cyclo-tetra-chromotropylene as an indicator and enzymes glucose oxidase or urease were employed in the superstrate as a sensing membrane. Individual enzyme reactions as well as their inhibition by pesticides were studied by monitoring the intensity of light output from the planar waveguide. The results were compatible with those obtained by conventional ultraviolet-visible absorption spectroscopy. The instrument detection limit for Imidacloprid pesticide was found to be as low as 10 ppb in concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.