Abstract

In this paper, we present a robust technique of stereo calibration using homography constraints. Our method is novel as stereo calibration is performed by solving a polynomial equation system including two radial distortion parameters, using a minimal number of five image point correspondences. This enables us to calibrate from only a pair of stereo images of a planar scene, and to provide the exact algebraic solution to the stereo calibration problem. The minimal case solution is useful to reduce the computation time and increase the calibration robustness when using random sample consensus (RANSAC) from the correspondences of the stereo image pair. Further, a non-linear parameter optimization for the intrinsic and extrinsic parameters of stereo cameras is performed using the inliers, which are determined after RANSAC. In addition, our method can achieve more robust calibration results with multiple stereo image pairs by performing joint optimization. In contrast to the previous stereo calibration methods, our method works without requiring any special hardware and has no problems with one stereo image pair, even corrupted by severe radial distortions. Finally, by evaluating our method on both synthetic and real scene data, we demonstrate that our method is both efficient and accurate for stereo calibration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call