Abstract

The theory of quasiconformal mappings divides traditionally into two branches, the mappings in the plane and the case of higher dimensions. Basically, this is not due to the history of the topic but rather since planar quasiconformal mappings admit flexible methods (so far) not available in space. In this expository paper we wish to describe some recent trends and activities in quasiconformal theory peculiar to the plane. It is obvious, though, that not all topics can be covered no matter which point of view is taken; many important advances and connections must necessarily be bypassed. Therefore we concentrate on a specific theme, a property that singles out the difference between mappings in plane and in space: Planar quasiconformal mappings admit an effective deformation theory; any such mapping can be deformed to the identity, within the family of all quasiconformal mappings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.