Abstract
Solid-supported polymer membranes (SSPMs) offer great potential in material and life sciences due to their increased mechanical stability and robustness compared to solid-supported lipid membranes. However, there is still a need for expanding the functionality of SSPMs by combining them with synthetic molecular assemblies. In this study, SSPMs served as a flexible matrix for the insertion of resorcinarene monomers and their self-assembly into functional hexameric resorcinarene capsules. Resorcinarene capsules provide a large cavity with affinity specifically for cationic and polyhydroxylated molecules. While the capsules are stable in apolar organic solvents, they disassemble when placed in polar solvents, which limits their application. Here, a solvent-assisted approach was used for copolymer membrane deposition on solid support and simultaneous insertion of the resorcinarene monomers. By investigation of the molecular factors and conditions supporting the codeposition of the copolymer and resorcinarene monomers, a stable hybrid membrane was formed. The hydrophobic domain of the membrane played a crucial role by providing a sufficiently thick and apolar layer, allowing for the self-assembly of the capsules. The capsules were functional inside the membranes by encapsulating cationic guests from the aqueous environment. The amount of resorcinarene capsules in the hybrid membranes was quantified by a combination of quartz-crystal microbalance with dissipation and liquid chromatography-mass spectrometry, while the membrane topography and layer composition were analyzed by atomic force microscopy and neutron reflectometry. Functional resorcinarene capsules inside SSPMs can serve as dynamic sensors and potentially as cross-membrane transporters, thus holding great promise for the development of smart surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.