Abstract

Planar plasmonic focusing of surface plasmon polaritons (SPPs) by an in-plane nanostructure consisting of Ag-column arrays and an in-plane Fresnel zone plate (FZP) with a Cu grating underneath for energy compensation was demonstrated. The CdS-based hybrid plasmonic waveguide generated in the Ag-column arrays was characterized with a scanning near-field optical microscope. By using the FZP focusing structure, the SPP modes were separated from the CdS photoluminescence background and focused at the FZP focus area, and in this way, were used as the source for the SPP waveguide. Finite-difference time-domain simulations correspond with the experimental observations, suggesting that this is indeed an effective approach to control SPP coupling within the dielectric nanoribbon waveguide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.