Abstract

This paper revisits the planar periodic motions around libration points in circular restricted three-body problem based on invariant manifold technique. The invariant manifold technique is applied to construct the nonlinear polynomial relations between ξ-direction and η-direction of a small celestial body during its periodic motion. Such direct nonlinear relations reduce the dimension of the dynamical system and facilitate convenient approximate analytical solutions. The nonlinear directional relations also provide terminal constraints for computing periodic motions. The method to construst periodic orbits proposed in this study presents a new point of view to explore the orbital dynamics. As an application in numerical simulations, nonlinear relations are adopted as topological terminal constraints to construct the periodic orbits with differential correction procedure. Numerical examples verify the validity of the proposed method for both collinear and triangular libration cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.