Abstract
The air–water interface is an important boundary where material exchanges, it has important influence on ecosystem and biogeochemical cycle. The rain can change the balance of interface, improve the exchange rate of gas flux, and make the distribution of dissolved oxygen and pH around the interface change in horizontal and vertical direction. Based on planar sensing film with highly spatial and temporal resolution which can provide the characteristics of two-dimensional distribution information, we carry out the simulation experiment of raindrops about oxygen and pH distribution in air–water interface using double parameters planar optode. The experimental data are analyzed from the gas transfer velocity, the kinetic energy flux and the sea-air flux of oxygen. The results show that rainfall process plays an important role in adjusting dissolved oxygen and pH of the surface water, the raindrop can break the balance of micro surface of water–gas interface mechanism, increase the gas transfer velocity and promote the dissolution of oxygen in the atmosphere in water to make a average increase of about 2.3 mg/L in vertical direction 23 mm. The impact of rainfall on pH of the water surface within 12 mm is relatively obvious, the pH value decreased by an average of 0.2–0.4 units, indicating that the raindrop promoted the migration of the atmosphere in the air–water interface, and the dissolved CO2 caused the surface water acidification. This study provides a novel technical method for understanding the influence of raindrops on the dissolved oxygen concentration and pH of the surface water in low wind-impacting area and static-water area. This study provides a novel technical method for understanding the influence of raindrops on the dissolved oxygen concentration and pH of the surface water in low wind impacting area and static water area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.