Abstract

A planar ultramicroelectrode nitric oxide (NO) sensor was fabricated to measure the local NO surface concentrations from NO-releasing microarrays of varying geometries. The sensor consisted of platinized Pt (25 microm) working electrode and a silver paint reference electrode coated with a thin silicone rubber gas permeable membrane. An internal hydrogel layer separated the Pt working electrode and gas permeable membrane. The total diameter of the sensor was <or=50 microm, and demonstrated negligible analyte trapping effects. The sensitivity and response time of the ultramicroelectrode sensor to NO were 0.19+/- 0.07 pA nM(-1) and 1-4 s, respectively, with a 5 nM limit of detection. The sensor was employed to correlate the steady-state NO surface concentration and observed platelet adhesion resistance. Results indicate that the required steady-state NO concentration necessary to inhibit platelet adhesion to the micro-patterned xerogels depends on the xerogel geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.