Abstract

Microsupercapacitors are gaining increasing interest for energy storage in miniaturized electronic devices. However, the production of porous electrode material with standard microfabrication techniques is a big problem. Here, we report on the oblique angle deposition of highly porous and nanostructured columnar titanium nitride (TiN) films on silicon substrate using magnetron sputtering for high-performance microsupercapacitors. The intercolumnar porosity of the sputtered TiN films can be systematically controlled as a function of the oblique angle α achieved by tilting the substrate. The denser morphologies in TiN films deposited at α = 0° lead to moderate capacitive behavior in a 1 M Na2SO4 electrolyte solution. Meanwhile, a high areal capacitance of 17.5 mF·cm-2 is obtained for a 60° oblique angle due to high intercolumnar porosity in films, which increases the specific surface area and facilitates easy electrolyte permeation. The electrodes also retain 88.2% of the initial specific capacitance after 10,000 charging/discharging cycles. A planar interdigitated microsupercapacitor has been subsequently fabricated based on an optimized TiN thin film serving as both an efficient electrode and a current collector. TThe device was electrochemically tested using polyvinyl alcohol (PVA)-Na2SO4 hydrogel electrolyte allowing a voltage window of 1.8 V and showed energy densities of 0.46 μWh·cm-2 while maintaining a high-power density of 703.12 μWh·cm-2. This work gives insight into the use of oblique angle deposition for obtaining highly porous films of other electrode materials for microsupercapacitor applications with the advantage of using a simple microfabrication process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call