Abstract

Variable optical attenuators (VOAs) are essential components in wavelength division multiplexing (WDM) networks, light waveform generators, and optical fiber test equipment. Among various types of planar MEMS VOAs, a shutter type and a reflective type have been most frequently studied so far. In a shutter type, a knife-edge-like beam blocker is inserted in between the butt-coupled input and output fibers, partially obstructing the coupling between the fibers. In a reflective type, a mirror that is placed in the optical path controls the alignment between the fibers to result in attenuation. The movement of the shutter or the mirror is controlled by MEMS actuators, such as comb-drive actuators. In most of the planar MEMS VOAs reported, the relationship between the attenuation and the control voltage has been highly nonlinear. This nonlinearity results in uneven resolution throughout the attenuation range. Although this nonlinearity can be addressed by employing a control system, a structure-based solution is preferred, which can curtail the requirement of power consumption, and prevent control instability issues. In this study, shaped-finger comb-drive actuators are used to obtain a linear relationship between the control voltage and the attenuation in planar MEMS VOAs. Two types, i.e. shutter-type and reflective-type, of VOAs are examined. First, the objective differential equation is established based on attenuation-displacement relationships, electrostatic/mechanical force balance equation, and the design objective (linearity) equation. Then, the differential equation (in terms of 2-D comb capacitance) is solved by using the Euler’s method, and the finger gaps are calculated by using a conformal mapping method. When a single comb-drive actuator is used, an excluded zone needs to be introduced around the region of small displacement. Effects of the width of the excluded zone to the device characteristics are studied. The issue of zone exclusion can be addressed by adopting dual (control and bias) combs. The effects of design parameters to the VOA performances are studied. It is shown that the planar MEMS VOAs with linear attenuation-voltage relationships can be designed successfully by using the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.