Abstract

We prove that every planar graph with maximum degree three has a planar drawing in which the edges are drawn as circular arcs that meet at equal angles around every vertex. Our construction is based on the Koebe–Andreev–Thurston circle packing theorem, and uses a novel type of Voronoi diagram for circle packings that is invariant under Möbius transformations, defined using three-dimensional hyperbolic geometry. We also use circle packing to construct planar Lombardi drawings of a special class of 4-regular planar graphs, the medial graphs of polyhedral graphs, and we show that not every 4-regular planar graph has a planar Lombardi drawing. We have implemented our algorithm for 3-connected planar cubic graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.