Abstract

We report a novel approach for single-shot planar imaging of CH3 radicals in premixed methane and air flames. A 213 nm beam from the 5th harmonic of an Nd:YAG laser was resonantly absorbed by the CH3 radicals, which were excited to the highly pre-dissociative upper level and dissociated to H2 and CH (X), as the main dissociation channel. The CH radicals were consequently excited by a 388 nm beam from an alexandrite laser, and the fluorescence from the excited CH radicals was collected off-resonant at 431 nm. Using this Photo-Fragmentation Planar Laser-Induced Fluorescence (PF-PLIF) technique, instantaneous flame front structures, represented by CH3 radicals, can be visualized with high spatial resolution over a broad range of stoichiometric ratios. Signal-to-noise ratios up to 50 were observed for premixed methane/air flame with stoichiometric ratio as low as 0.26. The CH radicals naturally presented in flame front are more than 400 times lower in concentration than the CH3 radicals in premixed methane/air flames even at the conditions close to stoichiometric or slightly fuel rich cases where the highest CH concentrations exist, and the CH3/CH concentration ratios increase dramatically moving towards fuel lean conditions. By adopting a structured illumination of the 213 nm pump beam, the naturally presented CH radicals were visualized simultaneously with CH3 at slightly fuel rich laminar flames, where the CH signal intensity was 5 times lower than that from CH3. The results indicate that the CH3 PF-PLIF technique can provide much stronger signal than the CH PLIF and presented a much promising potential for applications in fuel-lean flames. Finally, the CH3 PF-PLIF was performed in premixed turbulent flames to demonstrate the feasibility of this technique for flame front visualization in turbulent premixed flames.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call