Abstract

In this paper, a novel geometric approach for studying steady, two-dimensional, incompressible flows has been thoroughly developed. The continuity and momentum equations were expressed in the flow’s intrinsic coordinate system in order to “accommodate” the geometric parameters characterizing it, namely, the local curvatures of the streamlines and their orthogonal trajectories. As a result, a new description of the governing equations was obtained, in which the concerned variables are the velocity magnitude v and a new quantity which was named geometric vorticity, Γ. The latter is defined by the curl of the global curvature vector KG and can be interpreted as the geometric signature of the known vorticity Ω. This approach leads to a new formulation of the Navier-Stokes and Euler equations, the so-called “velocity-curvature” formulation. In this framework, an expression for the flow velocity as a function of geometric parameters only was developed. This reveals that the physical information of a steady incompressible flow is imprinted in its geometry. It is this insight that makes the aforementioned formulation not only conceptually different to the existing classical descriptions, traditionally employed in both analytical and numerical applications, but also attractive, due to the advantages that it could provide at a theoretical and an experimental level. Finally, the derived results are briefly discussed, while emphasizing the implications that the identified geometry-physics interface might have in the future for planar flow analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.