Abstract

A planar slow-wave structure consisting of a planar helix with straight-edge connections has been studied in the context of application in traveling-wave tubes. The effects of several practical modifications to the basic structure are examined. These modifications comprise a vacuum tunnel, metal shield, and multilayer dielectric substrates. A modified effective dielectric constant method is proposed to obtain the dispersion characteristics for different possible configurations. Furthermore, coupling impedance for the different configurations has been calculated using the corresponding 2-D approximations. It is shown that, far from cutoff, the phase velocity and coupling impedance values calculated in this manner match very well with the simulation results obtained from CST Microwave Studio. The effects of variations in aspect ratio, metal shield distance, and dielectric constant of the substrates on phase velocity and coupling impedance are studied. A coplanar waveguide feed has been designed for one of the possible configurations. The measured S-parameters and phase velocity values for this proof-of-concept configuration agree well with the simulated results and confirm the ease of fabrication, low loss, and the wideband potential of the planar helix with straight-edge connections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.