Abstract
Let D := {z ? C : |z| < 1} be the open unit disk, and h and 1 be two analytic functions in D. Suppose that f = h + ?g is a harmonic mapping in D with the usual normalization h(0) = 0 = g(0) and h'(0) = 1. In this paper, we consider harmonic mappings f by restricting its analytic part to a family of functions convex in one direction and, in particular, starlike. Some sharp and optimal estimates for coefficient bounds, growth, covering and area bounds are investigated for the class of functions under consideration. Also, we obtain optimal radii of fully convexity, fully starlikeness, uniformly convexity, and uniformly starlikeness of functions belonging to those family.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.