Abstract

The planar Hall effect in a ferromagnetic conductor is considered within a simple two-liquid hydro-dynamic model. It is shown that, even in the simple case of an isotropic Fermi surface in the absence of thermal spread, the magnitude of the Hall effect is comparable to that in semiconductors because of the presence of two groups of conduction electrons with their spins parallel and perpendicular to the quantization axis, respectively. In addition to the planar Hall field, a spin flux parallel to this field arises, with the consequence that the extent of spin polarization of the conduction electrons varies along the Hall field direction (planar spin Hall effect).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.