Abstract
Flexible risers transporting hydrocarbon liquid–gas flows may be subject to internal dynamic fluctuations of multiphase densities, velocities and pressure changes. Previous studies have mostly focused on single-phase flows in oscillating pipes or multiphase flows in static pipes whereas understanding of multiphase flow effects on oscillating pipes with variable curvatures is still lacking. The present study aims to numerically investigate fundamental planar dynamics of a long flexible catenary riser carrying slug liquid–gas flows and to analyse the mechanical effects of slug flow characteristics including the slug unit length, translational velocity and fluctuation frequencies leading to resonances. A two-dimensional continuum model, describing the coupled horizontal and vertical motions of an inclined flexible/extensible curved riser subject to the space–time varying fluid weights, flow centrifugal momenta and Coriolis effects, is presented. Steady slug flows are considered and modelled by accounting for the mass–momentum balances of liquid–gas phases within an idealized slug unit cell comprising the slug liquid (containing small gas bubbles) and elongated gas bubble (interfacing with the liquid film) parts. A nonlinear hydrodynamic film profile is described, depending on the pipe diameter, inclination, liquid–gas phase properties, superficial velocities and empirical correlations. These enable the approximation of phase fractions, local velocities and pressure variations which are employed as the time-varying, distributed parameters leading to the slug flow-induced vibration (SIV) of catenary riser. Several key SIV features are numerically investigated, highlighting the slug flow-induced transient drifts due to the travelling masses, amplified mean displacements due to the combined slug weights and flow momenta, extensibility or tension changes due to a reconfiguration of pipe equilibrium, oscillation amplitudes and resonant frequencies. Single- and multi-modal patterns of riser dynamic profiles are determined, enabling the evaluation of associated bending/axial stresses. Parametric studies reveal the individual effect of the slug unit length and the translational velocity on SIV response regardless of the slug characteristic frequency being a function of these two parameters. This key observation is practically useful for the identification of critical maximum response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.