Abstract

This paper investigates the influence of the nonlinearities of a vibration isolation system on the planar dynamics of a motorcycle. The use of a nonlinear isolation system is often necessitated by design and packaging constraints. Although the use of a vibration isolation system is uncommon in motorcycles, it is used in some cases to enhance ride comfort by mitigating vibrations transmitted to the rider due to shaking forces. In such cases, the handling of the motorcycle can be influenced due to the coupled dynamics of the rear unsprung mass and the swing arm. In this paper, a stochastic analysis has been performed by using the statistical linearization method to specifically examine nonlinearities associated with the vibration isolation system. An eight degree-of-freedom planar model has been developed, and each isolator is represented by a modified multi-axial Kelvin-Voigt model. It has been observed that the model developed in this study can capture the coupled dynamics between the rear suspension and the vibration isolation system. Results indicate that the nonlinear design of the vibration isolation system can be useful in enhancing ride comfort in the lower frequency range without an adverse impact on handling. Furthermore, it has been observed that the parameters associated with the nonlinear vibration isolation system can be tuned to enhance ride comfort while meeting the design requirements of spatial dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call