Abstract

Round link chain drives can be sorted into the transmission, parallel conveyor and non-parallel conveyor systems according to their applications and guide rail’s layouts. The polygonal action in these systems is irregular. Compared with the literature, this paper proposes a more accurate modelling approach to capture the dynamic behaviour of round link chain drives, which can consider both the irregular polygonal action and non-parallel guide rail’s layout. The dynamic models of the three types of round link chain drives are developed based on the finite segment method. The chain is divided into multiple discrete segments that are connected by Kelvin models. To account for the irregular polygonal action, the sprocket is equivalent to an irregular polygon. To consider the non-parallel guide rail’s layout in the conveyor system, the chain segment out of the guide rail and the corresponding sprocket are treated as a swinging-block mechanism. The proposed approach is applied to model a scraper conveyor. Simulation results show that the irregular polygonal action and non-parallel guide rail’s layout greatly increase the fluctuation of the chain tension force.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call