Abstract
AbstractElectronics on paper enable some specific applications out of conventional ones which require innovative approaches and concepts on the design of devices and systems. Within this context, this work demonstrates that a unique set of characteristics can be combined in planar dual‐gate oxide–based field effect transistors with a back floating electrode using paper simultaneously as substrate and dielectric. The working principle of these transistors relies on the formation of electric double layers at the semiconductor/paper and paper/back floating electrode interfaces (associated to ions displacement within the paper) that can be disturbed by a voltage applied at a secondary gate, by the back floating potential or by the combination of both. This feature allows for the control of the on‐voltage of the transistors, from depletion to enhancement mode, for instance. Moreover, this specific characteristic allows the implementation of universal logic gates (NAND and NOR) using only one transistor, by setting the proper combination of the voltage level applied at each gate. This way a simple and universal device architecture can be envisaged towards the simplification of the production of low power electronic systems on paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.