Abstract

The design, fabrication, and demonstration of a planar two-dimensional-crossed reflective diffractive grating are proposed to construct a novel optical configuration, to the best of our knowledge, potentially applied for atom cooling and trapping in a magneto-optical trap. Based on the proposed single-beam single-exposure scheme by means of an orthogonal two-axis Lloyd's mirrors interferometer, we rapidly patterned a ∼1µm period grating capable of providing a uniform intensity of the diffracted beams. The key structural parameters of the grating including the array square hole's width and depth were determined, aiming at providing a high energy of the diffracted beams to perform the atom cooling and trapping. To guarantee the diffracted beams to be overlapped possibly, we adopted a polarized beam splitter to guide the optical path of the incident and zero-order diffracted beams. Therefore, one zero-order diffracted beam with a retroreflected mode and four first-order diffracted beams with appropriate optical path constructed a three-dimensional optical configuration of three orthogonal pairs of counterpropagating beams. Finally, three pairs of the counterpropagating cooling laser beams with 9 mm diameter and >10% diffraction efficiencies were achieved, and the circular polarization chirality, purity, and compensation of the desired diffracted beams are further evaluated, which preliminarily validated a high applicability for the magneto-optical trap system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.