Abstract

This study proposes a general analytical compliance model for symmetric notch flexure hinges composed of segments with constant width and analytically defined variable thicknesses. Applying serial combination and longitudinal/transverse mirroring of base segments, the in-plane compliances of the full flexure are obtained as functions of one quarter-flexure compliances. The new right circularly corner-filleted parabolic flexure hinge is introduced as an illustration of the general analytical modeling algorithm. Experimental testing and finite element simulation confirm the analytical model predictions for an aluminum flexure prototype. The planar compliances sensitivity to the relevant geometric parameters is also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call