Abstract

A simple theoretical model for soil–structure interaction in water saturated poroelastic soils is presented, developed to explore if the apparent building–foundation–soil system frequency changes due to water saturation. The model consists of a shear wall supported by a rigid circular foundation embedded in a homogenous, isotropic poroelastic half-space, fully saturated by a compressible and inviscid fluid, and excited by in-plane wave motion. The motion in the soil is governed by Biot's theory of wave propagation in fluid saturated porous media. Helmholtz decomposition and wave function expansion of the two P-wave and the S-wave potentials is used to represent the motion in the soil. The boundary conditions along the contact surface between the soil and the foundation are perfect bond (i.e. welded contact) for the skeleton, and either drained or undrained hydraulic condition for the fluid (i.e. pervious or impervious foundation). For the purpose of this exploratory analysis, the zero stress condition at the free surface is relaxed in the derivation of the foundation stiffness matrix, which enables a closed form solution. The implications of this assumption are discussed, based on published comparisons for the elastic case. Also, a closed form representation is derived for the foundation driving forces for incident plane (fast) P-wave or SV wave. Numerical results and comparison with the full-scale measurements are presented in the companion paper, published in this issue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.