Abstract

Deep Convolutional Neural Networks (DCNNs) exhibit remarkable performance in a number of pattern recognition and classification tasks. Modern DCNNs involve many millions of parameters and billions of operations. Inference using such DCNNs, if implemented as software running on an embedded processor, results in considerable execution time and energy consumption, which is prohibitive in many mobile applications. Field-programmable gate array (FPGA)-based acceleration of DCNN inference is a promising approach to improve both energy consumption and classification throughput. However, the engineering effort required for development and verification of an optimized FPGA-based architecture is significant. In this article, we present PLACID, an automated PLatform for Accelerator CreatIon for DCNNs. PLACID uses an analytical approach to characterization and exploration of the implementation space. PLACID enables generation of an accelerator with the highest throughput for a given DCNN on a specific target FPGA platform. Subsequently, it generates an RTL level architecture in Verilog, which can be passed onto commercial tools for FPGA implementation. PLACID is fully automated, and reduces the accelerator design time from a few months down to a few hours. Experimental results show that architectures synthesized by PLACID yield 2× higher throughput density than the best competing approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call