Abstract

Aim: Exposure to the ubiquitous endocrine disrupter Bisphenol A (BPA) has been associated, in pregnancy, with low birth weight. The aim of our study is the identification of the damage caused by Bisphenol A on placental tissue through the evaluation of its effects on micro-vessel density and apoptosis. Methods: After fertilization, we exposed 3 female rats to oral BPA, by means of a free access to a beverage solution containing 100 μg/L of BPA. Three female rats were used as controls. Placentas underwent histological examination and immunohistochemistry for von Willebr and factor (F-VIII) and caspase-9. Results: Sixty-seven fetuses have been produced, 30 from control rats and 37 from exposed rats. Exposed fetuses showed a lower longitudinal/transverse diameter ratio than controls (2.57 ± 0.29 vs. 2.78 ± 0.38, p < 0.05). Also, exposed fetuses showed a significant reduction in the number of placental vessels per field (124.86 ± 19.15 vs. 143.54 ± 22.09, p < 0.05). On the other hand, apoptosis is not increased by exposure, as shown by caspase-9 levels. Conclusion: Exposure to BPA during pregnancy may affect placental vascularization, and this phenomenon may explain the lower birth weight reported. However, our results do not show the increase in apoptosis observed in vitro.

Highlights

  • Bisphenol A (BPA) is an organic compound containing two phenolic groups and it is fundamental in the production of plastics, resins and polycarbonate

  • BPA reaches the human organism through foods from plastic containers, especially if they are exposed to high temperatures and acidity [2]

  • Placental diameter was significantly affected by the BPA treatment (12.44 ± 0.92 mm for the exposed rats, 13.10 ± 1.09 mm for the non-exposed rats, p < 0.05)

Read more

Summary

Introduction

Bisphenol A (BPA) is an organic compound containing two phenolic groups and it is fundamental in the production of plastics, resins and polycarbonate. It can be found in food containers, baby bottles, plastics tableware and in epoxy resins used to produce films [1]. A large number of people are exposed to BPA This compound, as 17-β estradiol, stimulates cellular responses and this role is more evident at exposure to low concentrations. Its phenolic structure allows it to interact with the estrogen receptor For this reason, BPA is involved in many endocrine disorders such as infertility, early puberty, hormone dependent neoplasms and polycystic ovary syndrome [3]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call