Abstract
IntroductionUnderstanding regarding the whole placental vascular network structure is limited. Our aim was to quantitatively characterize the human placental vascular tree ex-vivo using high-resolution MRI. Methods34 normal placentas were rinsed and injected with a solution of gelatin and contrast agent through the umbilical vessels. A sample of six placentas taken from pregnancies with intrauterine-growth-restriction (IUGR) was used to demonstrate the potential application to cases with placental insufficiency. Structural ex-vivo MR scans of the placenta were performed using high resolution T1 weighted images. A semi-automatic method was developed to segment and characterize the placental vascular architecture: placental volume and cord insertion location, number of bifurcations, generations and vessels diameters. ResultsDifferent vascular patterns were found in placentas with central versus marginal cord-insertion. Based on the placental volume and number of bifurcations we were able to predict birth weight. Furthermore, preliminary results on IUGR sample demonstrated the potential of this method to differentiate between small newborns with suspected IUGR from small normal newborns who reached their full growth potential. Results obtained using the automatic method were validated against manual values demonstrating no significant differences or bias. Histopathology supported the imaging findings. DiscussionThis is the first study to quantitatively characterize the human placental vascular architecture using high resolution ex-vivo MRI. Different patterns of vascular architecture may be related to different functioning of the placenta and affect fetal development. This method is simple, relatively fast, provides detailed information of the placental vascular architecture, and may have important clinical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.