Abstract

Lower maternal plasma volume expansion was found in idiopathic intrauterine growth restriction (IUGR) but the link remains to be elucidated. An animal model of IUGR was developed by giving a low-sodium diet to rats over the last week of gestation. This treatment prevents full expansion of maternal circulating volume and the increase in uterine artery diameter, leading to reduced placental weight compared to normal gestation. We aimed to verify whether this is associated with reduced remodeling of uteroplacental circulation and placental hypoxia. Dams were divided into two groups: IUGR group and normal-fed controls. Blood velocity waveforms in the main uterine artery were obtained by Doppler sonography on days 14, 18 and 21 of pregnancy. On day 22 (term = 23 days), rats were sacrificed and placentas and uterine radial arteries were collected. Diameter and myogenic response of uterine arteries supplying placentas were determined while expression of hypoxia-modulated genes (HIF-1α, VEGFA and VEGFR2), apoptotic enzyme (Caspase -3 and -9) and glycogen cells clusters were measured in control and IUGR term-placentas. In the IUGR group, impaired blood velocity in the main uterine artery along with increased resistance index was observed without alteration in umbilical artery blood velocity. Radial uterine artery diameter was reduced while myogenic response was increased. IUGR placentas displayed increased expression of hypoxia markers without change in the caspases and increased glycogen cells in the junctional zone. The present data suggest that reduced placental and fetal growth in our IUGR model may be mediated, in part, through reduced maternal uteroplacental blood flow and increased placental hypoxia.

Highlights

  • ObjectivesWe aimed to verify whether this is associated with reduced remodeling of uteroplacental circulation and placental hypoxia

  • The aetiology of abnormal fetal growth, i.e. intrauterine growth restriction (IUGR), is not well understood, with about 40% of IUGR cases being idiopathic [1]

  • At day 14 of pregnancy (Fig 1A, upper panel), the main uterine artery blood flow waveform was characterised by an abrupt increase in systole velocity followed by a progressive decrease ending in a relatively high end diastolic velocity (EDV)

Read more

Summary

Objectives

We aimed to verify whether this is associated with reduced remodeling of uteroplacental circulation and placental hypoxia. The first aim of the current study was to characterise uteroplacental perfusion by measuring blood velocity in the main uterine artery and to evaluate the diameter and myogenic function of the radial artery in our IUGR model. This study was aimed at characterising uteroplacental circulation and placental phenotype in

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call