Abstract
The p53 tumor suppressor gene and members of the transforming growth factor-beta (TGF-beta) superfamily play central roles in signaling cell cycle arrest and apoptosis (programmed cell death) in normal development and differentiation, as well as in carcinogenesis. Here we describe a distantly related member of the TGF-beta superfamily, designated placental TGF-beta (PTGF-beta), that is up-regulated in response to both p53-dependent and -independent apoptotic signaling events arising from DNA damage in human breast cancer cells. PTGF-beta is normally expressed in placenta and at lower levels in kidney, lung, pancreas, and muscle but could not be detected in any tumor cell line studied. The PTGF-beta promoter is activated by p53 and contains two p53 binding site motifs. Functional studies demonstrated that one of these p53 binding sites is essential for p53-mediated PTGF-beta promoter induction and specifically binds recombinant p53 in gel mobility shift assays. PTGF-beta overexpression from a recombinant adenoviral vector (AdPTGF-beta) led to an 80% reduction in MDA-MB-468 breast cancer cell viability and a 50-60% reduction in other human breast cancer cell lines studied, including MCF-7 cells, which are resistant to growth inhibition by recombinant wild-type p53. Like p53, PTGF-beta overexpression was seen to induce both G(1) cell cycle arrest and apoptosis in breast tumor cells. These results provide the first evidence for a direct functional link between p53 and the TGF-beta superfamily and implicate PTGF-beta as an important intercellular mediator of p53 function and the cytostatic effects of radiation and chemotherapeutic cancer agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.