Abstract

It is possible to identify sub-populations of sows in every pig herd that consistently give birth to low birth weight (BW) piglets, irrespective of the litter size. A previous study from our group demonstrated that placental development is a main factor affecting the litter birth weight phenotype (LBWP) in sows, thereby impacting the BW of entire litters, but the biological and molecular pathways behind this phenomenon are largely unknown. The aim of this study was to investigate the differential gene expression in placental tissues at day 30 of gestation between low LBWP (LLBWP) vs. high LBWP (HLBWP) sows from a purebred Large White maternal line. Using mRNA sequencing, we found 45 differentially expressed genes (DEGs) in placental tissues of LLBWP and HLBWP sows. Furthermore, (GO) enrichment of upregulated DEGs predicted that there were two biological processes significantly related to cornification and regulation of cell population proliferation. To better understand the molecular interaction between cell proliferation and cornification, we conducted transcriptional factor binding site (TFBS) prediction analysis. The results indicated that a highly significant TFBS was located at the 5′ upstream of all four upregulated genes (CDSN, DSG3, KLK14, KRT17), recognized by transcription factors EGR4 and FOSL1. Our findings provide novel insight into how transcriptional regulation of two different biological processes interact in placental tissues of LLBWP sows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call