Abstract

Background and Objectives: Preeclampsia has been linked to an inflammatory response that may be brought on by endothelial cell dysfunction. This paper investigates the pathomechanism of syncytiotrophoblast basement membrane (STBM) damage and Placental Protein 13 (PP13) release, which may have a role in systemic endothelial dysfunction in preeclampsia. Materials and Methods: This comparative cross-sectional study involves 54 preeclampsia patients (27 early-onset preeclampsia and 27 late-onset preeclampsia) and 27 pregnant women with normal blood pressure. An enzyme-linked immunosorbent assay was performed to evaluate maternal blood levels of PP13. Following birth, a portion of the placenta was collected for transmission electron microscope (TEM) and immunohistochemical (IHC) analysis. The data were analyzed using STATA version 15. Results: PP13 expression in the placental syncytiotrophoblast was significantly lower in the early-onset preeclampsia, compared to late-onset preeclampsia and normotensive pregnancy, group (p < 0.001). In contrast, serum PP13 levels were found to be the highest in the early-onset preeclampsia group, although no significant difference were found in mean maternal serum levels of PP13 between the three groups. The decreased PP13 expression in placental syncytiotrophoblast can be attributed to the greater extent of damage in the STBM in early-onset preeclampsia that leads to the release of a larger amount of PP13 into maternal circulation. The hypothesis aligns with the TEM analysis results. Preeclamptic pregnancies showed placental syncytiotrophoblast aponeurosis, whereas normotensive pregnancies did not. Placental lesions and STBM shedding were found to be more pronounced in early-onset preeclampsia compared to late-onset preeclampsia. Conclusions: PP13 and STBM damage may play a role in systemic endothelial dysfunction in preeclampsia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.