Abstract

BackgroundMetabolic changes in obese pregnant women, such as changes of plasma lipids beyond physiological levels, may subsequently affect fetal development in utero. These metabolic derangements may remain in the offspring and continue throughout life. The placenta mediates bidirectional exchange of nutrients between mother and fetus. The impact of prepregnancy obesity on placental transfer of lipids is still unknown.ObjectiveWe aimed to examine materno-to-fetal free fatty acid (FFA) transfer by a combined experimental and modeling approach. Flux of 13C-labeled FFA was evaluated by ex vivo perfusion of human placentae as a function of prepregnancy obesity. Mathematical modeling complemented ex vivo results by providing FFA kinetic parameters.ResultsObesity was strongly associated with elevated materno-to-fetal transfer of applied 13C-FFA. Clearance of polyunsaturated 13C-docosahexaenoic acid (DHA) was most prominently affected. The use of the mathematical model revealed a lower tissue storage capacity for DHA in obese compared with lean placentae.ConclusionBesides direct materno-to-fetal FFA transfer, placental mobilization accounts for the fetal FA supply. Together, with metabolic changes in the mother and an elevated materno-fetal FFA transfer shown in obesity, these changes suggest that they may be transmitted to the fetus, with yet unknown consequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.