Abstract

Intrauterine Growth Restriction (IUGR) is a common and significant complication that arises during pregnancy wherein the fetus fails to attain its full growth potential. Mitochondria being one of the primary sources of energy, plays an important role in placentation and fetal development. In IUGR pregnancy, increased oxidative stress due to inadequate oxygen and nutrient supply could possibly alter mitochondrial functions and homeostasis. In this study, we evaluated the biochemical and molecular changes in mitochondria as biosignature for early and better characterization of IUGR pregnancies. We identified significant increase in mtDNA copy number in both IUGR (p = 0.0001) and Small for Gestational Age (SGA) but healthy (p = 0.0005) placental samples when compared to control. Whole mitochondrial genome sequencing identified novel mutations in both coding and non-coding regions of mtDNA in multiple IUGR placental samples. Sirtuin-3 (Sirt3) protein expression was significantly downregulated (p = 0.027) in IUGR placenta but there was no significant difference in Nrf1 expression in IUGR when compared to control group. Our study provides an evidence for altered mitochondrial homeostasis and paves a way towards interrogating mitochondrial abnormalities in IUGR pregnancies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.