Abstract
AimGestational diabetes mellitus (GDM) is the most common metabolic disorder during pregnancy. Accumulating studies have reported metabolites that are significantly associated with the development of GDM. However, studies on the metabolism of placenta, the most important organ of maternal‐fetal energy and material transport, are extremely rare. This study aimed to identify and discuss the relationship between differentially expressed metabolites (DEM) and clinical parameters of the mothers and newborns.MethodsIn this study, metabolites from 63 placenta tissues (32 GDM and 31 normal controls) were assayed by ultra‐performance liquid chromatography‐high resolution mass spectrometry (UPLC‐HRMS).ResultsA total of 1297 annotated metabolites were detected, of which 87 significantly different in GDM placenta. Lipids and lipid‐like molecules accounted for 62.1% of DEM as they were significantly enriched via the “biosynthesis of unsaturated fatty acids” and “fatty acid biosynthesis” pathways. Linoleic acid and α‐linolenic acid appeared to be good biomarkers for the prediction and diagnosis of GDM. In addition, the level of PC(14:0/18:0) was negatively correlated with neonatal weight. 14 metabolites significantly different in male and female offspring, with the most increase in female newborns.ConclusionEven if maternal blood glucose level is well controlled, there are still metabolic abnormalities in GDM. Lipids and lipid‐like molecules were the main differential metabolites, especially unsaturated fatty acids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.