Abstract

In peripheral artery disease (PAD), atherosclerotic occlusion chronically impairs limb blood flow. Arteriogenesis (collateral artery remodeling) is a vital adaptive response to PAD that protects tissue from ischemia. People with type II diabetes have a high risk of developing PAD and would benefit from arteriogenesis. However, arteriogenesis is suppressed in people with diabetes by a multifaceted mechanism which remains incompletely defined. Upregulation of placental growth factor (PLGF) is a key early step in arteriogenesis. Therefore, we hypothesized that metabolic dysfunction would impair PLGF expression in skeletal muscle. We tested this hypothesis in C57BL/6J and ApoE-/- mice of both sexes fed a Western diet (WD) for 24 wk. We first assessed baseline levels of PLGF, vascular endothelial growth factor (VEGF-A), and VEGF receptor 1 (VEGFR1) protein in hindlimb skeletal muscle. Only PLGF was consistently decreased by the WD. We next investigated the effect of 24 wk of the WD on the response of PLGF, VEGF-A, VEGFR1, and monocyte chemoattractant protein-1 (MCP-1) to the physiological stimulus of vascular occlusion. Hindlimb ischemia was induced in mice by gradual femoral artery occlusion using an ameroid constrictor. Growth factor levels were measured 3-28 days postsurgery. In C57BL/6J mice, the WD decreased and delayed upregulation of PLGF and abolished upregulation of VEGF-A and VEGFR1 but had no effect on MCP-1. In ApoE-/- mice fed either diet, all factors tested failed to respond to occlusion. Metabolic phenotyping of mice and in vitro studies suggest that an advanced glycation end product/TNFα-mediated mechanism could contribute to the effects observed in vivo.NEW & NOTEWORTHY In this study, we tested the effect of a Western diet on expression of the arteriogenic growth factor placental growth factor (PLGF) in mouse skeletal muscle. We provide the first demonstration that a Western diet interferes with both baseline expression and hindlimb ischemia-induced upregulation of PLGF. We further identify a potential role for advanced glycation end product/TNFα signaling as a negative regulator of PLGF. These studies provide insight into one possible mechanism by which type II diabetes may limit collateral growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.