Abstract

Pre-eclampsia (PE) is a disorder affecting 5–10% of all pregnancies and is characterised by abnormal trophoblast invasion, maternal endothelial cell dysfunction and a systemic maternal response. A unifying factor responsible for eliciting these effects remains unknown. However, levels of the autocrine insulin mediators, inositolphosphoglycans (IPG), are elevated 3-fold in pre-eclamptic placentae compared with controls and are also elevated 3-fold in maternal urine of pre-eclamptic women, suggesting an abnormal paracrine role of the mediator in the systemic maternal response. At the placental level, IPGs are metabolic second messengers capable of eliciting some of the characteristic features of PE, such as the 10-fold increase in glycogen synthesis and 16-fold increase in the activity of the IPG-dependent enzyme glycogen synthase. IPGs are derived from their lipidic precursors, the glycosylphosphatidylinositols (GPI), in membrane associated caveolae by the action of a GPI-specific phospholipase D whose activity is regulated by its membrane microenvironment. We show that the lipidic GPI precursor was detected in total placental membrane and microvillous membrane from normal placentae. The presence of GPI could not be detected in PE placentae, suggesting that the GPI/IPG signalling system is dysregulated in this disorder. Equivalent amounts of a proteolytically-cleaved 50 kDa GPI-PLD protein is detected in both normal and PE placentae. However, GPI-PLD mRNA is absent, suggesting a mechanism of uptake from maternal serum. Since GPI-PLD, whose presence is required for hydrolysis of GPI and release of free IPG, is detectable with equal activity in both normal and PE placentae, we postulate that dysregulation of the tubular caveolar structure of the microvilli in pre-eclamptic placentae provides an environment which promotes the unregulated hydrolysis of GPI in this disorder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.