Abstract

Pregnant people are unable to take many prescription and over-the-counter medications because of suspected or known risk to the fetus. This undermedication contributes to the high maternal mortality rate in the United States and detracts from the quality of life of pregnant people. As such, there is an urgent need to develop safe pharmaceutical formulations for use during pregnancy. Most drugs are small molecules that easily cross the placenta, which is the biological barrier that separates the maternal and fetal bloodstreams. One potential approach to preventing fetal drug accumulation is to design drug compounds that are excluded by the placenta; however, there is little understanding of how macromolecular drug properties affect transplacental transport. To address this knowledge gap, we examined the transport behavior of fluorescently-labeled polymers with varying size, conformation, and chemistry. We compared these polymers to unconjugated fluorescein, a small molecule model drug that readily crosses biological barriers. We found that molecular size affected transplacental transport in an in vitro model, BeWo b30 monolayers, as well as in pregnant mice, with larger polymers having lower permeability. In addition to size, polymer chemistry altered behavior, with polyethylene glycol (PEG) molecules permeating the placental barrier to a greater extent than dextrans of equivalent molecular weight. PEG molecules were also more readily taken up into placental cells in vivo. These findings will inform the future development of drug conjugates or other macromolecular medicines that can safely be used during pregnancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.