Abstract

Due to the adverse effects of free drugs on the fetus, placental-mediated pregnancy complications still lack effective pharmacotherapy. This study aims to construct a non-spherical drug delivery system based on folate-conjugated pullulan acetate (FPA) for placental targeting and translocation. By adjusting the initial solvent system, FPA nanoparticles with different morphologies were prepared using dialysis method without a surfactant. Cytotoxicity and lactate dehydrogenase release assays indicated the good biocompatibility of FPA nanoparticles in BeWo b30 cells. Cellular uptake and in vitro placental barrier transportation studies showed that FPA nanoparticles entered the cells and transported across the cell monolayer, benefiting from the active target effect mediated by the folate receptor. Moreover, non-spherical FPA nanoparticles showed nuclear translocation due to their shape effect. These findings provide a novel aspect in placental-mediated pregnancy treatment and applications in the obstetrics field of drug use during pregnancy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call