Abstract
A prominent scenario for the evolution of viviparity and placentation in reptiles predicts a step-wise pattern with an initial phase of prolonged oviductal egg retention accompanied by progressive reduction in eggshell thickness culminating in viviparity; calcium placentotrophy evolves secondarily to viviparity. Saiphos equalis is an Australian scincid lizard with a reproductive mode that is uncommon for squamates because eggs are retained in the oviduct until late developmental stages, and the embryonic stage at oviposition varies geographically. We studied calcium mobilization by embryos in two populations with different oviductal egg retention patterns to test the hypothesis that the pattern of nutritional provision of calcium is independent of the embryonic stage at oviposition. Females from one population are viviparous and oviposit eggs containing fully formed embryos, whereas embryos in oviposited eggs of the second population are morphologically less mature, and these eggs hatch several days later. The reproductive mode of this population is denoted as prolonged oviductal egg retention. Yolk provided the highest proportion of calcium to hatchlings in both populations. Eggs of both populations were enclosed in calcified eggshells, but shells of the population with prolonged egg retention had twice the calcium content of the viviparous population and embryos recovered calcium from these eggshells. Placental transfer accounted for a substantial amount of calcium in hatchlings in both populations. Hatchling calcium concentration was higher in the population with prolonged egg retention because these embryos mobilized calcium from yolk, the eggshell and the placenta. This pattern of embryonic calcium provision in which both a calcified eggshell and placentotrophy contribute to embryonic nutrition is novel. The reproductive pattern of S. equalis illustrates that calcified eggshells are compatible with prolonged oviductal egg retention and that viviparity is not requisite to calcium placentotrophy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.