Abstract

ABSTRACT This study was conducted to illustrate the origin of these PE-related ncRNAs in maternal circulation and their underlying transport methods into target cells. We selected 10 women with severe pre-eclampsia (PE group) and 10 healthy participants who served as controls (NC group). Exosomes were isolated from their sera and their origin was determined by a specific marker, placental alkaline phosphatase (PLAP). We compared the ncrna associated with PE in exosomes and whole serum to observe the exchange of serum exosomes with trophoblast cells. The results showed that PLAP was enriched in the isolated exosomes. Seven PE-associated ncRNAs, including lnc-SNHG5, miR-26a-5p, miR-221-3p, miR-30a-3p, miR-18a, miR-152 and miR-155, were analyzed in placenta-derived exosomes and whole serum from both groups. miR-26a-5p, miR-152 and miR-155 were upregulated in the PE group compared with the NC group. 152 and miR-155 were upregulated. 152 and miR-155 were upregulated, while miR-18a and miR-221-3p were downregulated (P<0.05). ncRNAs were altered in serum and placenta-derived serum exosomes in a consistent trend. Fluorescence microscopy results showed that the nuclei were counterstained in HTR-8 cells exposed to PKH26-labeled exosomes. PE-associated ncRNAs can enter the maternal circulation through secretion and encapsulation into placenta-derived exosomes and participate in the development and progression of PE by targeting trophoblast cells. differential expression of ncRNAs in exosomes has the potential to be used as predictors for targeted therapy, providing new ideas and perspectives for improving maternal and infant outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call