Abstract

BackgroundH19 and IGF2 genes are imprinted and involved in regulating fetal and placental growth. The H19 differentially methylated region (DMR) is paternally methylated and maternally unmethylated and regulates the imprinted expression of H19 and IGF2. Epimutation at the H19-DMR in humans results in congenital growth disorders, Beckwith-Wiedemann and Silver-Russell syndromes, when erroneously its maternal allele becomes methylated and its paternal allele becomes unmethylated, respectively. Although H19 and IGF2 have been assessed for their involvement in pregnancy complications including fetal growth restriction (FGR) and pregnancy-induced hypertension (PIH)/hypertensive disorder of pregnancy (HDP) intensively in the last decade, it is still not established whether epimutation at the H19-DMR in the placenta results in pathogenic conditions in pregnancy. We aimed to assess the frequency of H19-DMR epimutation and its effects on the allelic expression patterns of H19 and IGF2 genes among normal and abnormal pregnancy cases.ResultsWe enrolled two independently collected sets of placenta samples from normal pregnancies as controls and common pregnancy complications, FGR and PIH (HDP). The first set consisted of 39 controls and 140 FGR and/or PIH cases, and the second set consisted of 29 controls and 62 cases. For these samples, we initially screened for DNA methylation changes at H19-DMR and IGF2-DMRs by combined bisulfite restriction analysis, and further analyzed cases with methylation changes for their allelic methylation and expression patterns. We identified one case each of FGR and PIH showing hypomethylation of H19-DMR and IGF2-DMRs only in the placenta, but not in cord blood, from the first case/control set. For the PIH case, we were able to determine the allelic expression pattern of H19 to be biallelically expressed and the H19/IGF2 expression ratio to be highly elevated compared to controls. We also identified a PIH case with hypomethylation at H19-DMR and IGF2-DMRs in the placenta from the second case/control set.ConclusionsPlacental epimutation at H19-DMR was observed among common pregnancy complication cases at the frequency of 1.5% (3 out of 202 cases examined), but not in 68 normal pregnancy cases examined. Alteration of H19/IGF2 expression patterns due to hypomethylation of H19-DMR may have been involved in the pathogenesis of pregnancy complications in these cases.

Highlights

  • H19 and IGF2 genes are imprinted and involved in regulating fetal and placental growth

  • Summarizing the above, we identified three cases with aberrant DNA hypomethylation at H19-differentially methylated region (DMR) out of 202 placentas from fetal growth restriction (FGR) and/or pregnancy-induced hypertension (PIH) cases

  • These results suggest the possibility that H19 and IGF2 expression levels vary among the human population presumably due to genetic diversity, that the appropriate balance of H19 and IGF2 expression levels is required for normal development, and that the extreme disturbance of the H19/IGF2 expression ratio in the placenta of case 2 may have impaired placental development and functions

Read more

Summary

Introduction

H19 and IGF2 genes are imprinted and involved in regulating fetal and placental growth. The H19 differentially methylated region (DMR) is paternally methylated and maternally unmethylated and regulates the imprinted expression of H19 and IGF2. Epimutation at the H19-DMR in humans results in congenital growth disorders, Beckwith-Wiedemann and Silver-Russell syndromes, when erroneously its maternal allele becomes methylated and its paternal allele becomes unmethylated, respectively. ICRs overlap with a differentially methylated region (DMR) that exhibits parental allele-specific DNA methylation inherited from gametes (sperm and oocyte) and maintained throughout subsequent development. H19 and IGF2 genes are imprinted (maternally and paternally expressed, respectively) and regulated by H19-DMR, the ICR for these genes being located at 2.5 kb upstream of the H19 promoter region. Increased and decreased expression levels of the IGF2 gene encoding insulin-like growth factor 2 due to ICR epimutation are considered to be the leading causes of BWS and SRS, respectively [3, 5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call